The Dedication of the Sterling Laboratory
Meeting of American Chemical Society
Next Week in Connection with the
Ceremonies at Yale's Great Chemistry Laboratory Will
Make Event of National Importance.

Football Tickets
Committee Announces Plans for the
Distribution of Seats for the Big Games Next Fall

Office 120 High Street, New Haven, Connecticut
$4.00 a Year
10 cts. a Copy
THE STERLING CHEMISTRY LABORATORY

The south facade, with its imposing entrance and full height, is directly opposite the Sloane Physics Laboratory.

Program

American Chemical Society Meeting and Dedication of Sterling Laboratory

MONDAY, APRIL 2
10:00 A.M.—REGISTRATION OPENS, BYERS HALL.
2:30 P.M.—COUNCIL MEETING, BYERS HALL.
6:45 P.M.—COUNCILORS’ DINNER, HOTEL TAFT.

Speakers at the Dinner

President Charles M. Walker, Chamber of Commerce, Torrington.
E. C. Franklin, President, American Chemical Society.
James Rosland Angel, President, Yale University.
A. A. Fries, Brigadier-General, Chemical Warfare Service.
Arthur D. Little, Consulting Chemist, Boston, Mass.

TUESDAY, APRIL 3
10:30 A.M.—GENERAL MEETING, WOOLSEY HALL.

Addresses of Welcome

David E. Fitzgerald, ’95 L., Mayor of New Haven.
President Angel.

Response

President Franklin, American Chemical Society.

General Address

Francis P. Garvin, ’97, “Chemistry and the Public.”

1:00 P.M.—LUNCHEON, UNIVERSITY DINING HALL.
2:00 P.M.—GENERAL SCIENTIFIC MEETING, WOOLSEY HALL.
Six addresses on scientific topics of general interest.
8:00 P.M.—SMOKE.".

WEDNESDAY, APRIL 4
11:00 A.M.—DEDICATION OF THE STERLING CHEMISTRY LABORATORY.

Presentation of the Keys

Mr. George H. Church
Representing the Sterling Trustees.

Acceptance for the University

Greeting to the American Chemical Society
President Angel
Reply on behalf of the Society
President Franklin.

Address

“The History of Chemistry in America, with Special Reference to Yale”
Edgar Fahs Smith

1:00 P.M.—LUNCHEON, UNIVERSITY DINING HALL, FOLLOWED
BY Short Addresses of Greeting from the University’s Foreign Guests.
2:00 P.M.—INSPECTION OF THE LABORATORY.
4:00-6:00 P.M.—TEA, STERLING LABORATORY.
6:00 P.M.—CHARLES BONSTEELE MEMORIAL DINNER.
8:30 P.M.—PUBLIC MEETING, WOOLSEY HALL.
Address by Sir J. J. Thomson, F.R.S.

THURSDAY, APRIL 5
9:30 A.M. & 2:30 P.M.—SECTIONAL AND DIVISIONAL MEETINGS.
3:30 P.M.—MEETING OF CHAIRMEN AND Secretaries OF LOCAL
SECTIONS.
5:30 P.M.—FRATERNITY AND ALUMNI DINNER.
8:30 P.M.—TENNIS, POLO GAMES, YALE ARMY.

FRIDAY, APRIL 6
9:30 A.M. & 2:30 P.M.—SECTIONAL AND DIVISIONAL MEETINGS.
1:00 P.M.—LUNCHEON FOR LADIES, LAWN CLUB.
8:30 P.M.—RECEPTION, WOOLSEY HALL.

SATURDAY, APRIL 7
9:00 A.M.—VISITS TO INDUSTRIAL PLANTS IN AND NEAR NEW
ONE OF THE LONG HALLS
These corridors, on the ground and main floor, extend the width of the building, and separate the class and lecture rooms from the laboratory departments.

THE LIBRARY
In this room are kept text and reference books and technical journals of chemistry.
A Description of the Sterling Laboratory

The dedication of the Sterling Chemistry Laboratory on Wednesday of this week—the one hundred and nineteenth anniversary of the first lecture on chemistry at Yale, given by Benjamin Silliman—during the sixty-fifth meeting of the American Chemical Society was an educational event of international importance attended by representatives of English, Scotch, French, Dutch, Italian, Scandinavian, and Canadian universities and by some fifteen hundred or more American chemists. While the Sterling Laboratory is not the largest laboratory for chemistry in the United States, it is the largest single unit devoted to chemical purposes that has ever been constructed. The term "unit" is used advisedly because most large laboratories are a more or less heterogeneous collection of independent laboratories housed in a single building.

A few figures will give some idea of the size of the structure. The maximum length is 328 feet, the maximum width 256 feet, and total finished floor area is 167,580 square feet. There are twelve classrooms with a total seating capacity of 630. Each is provided with a demonstration table for conducting illustrative experiments. The total laboratory capacity for undergraduate students is 900 at one time.

The laboratory may be divided for purposes of description into three parts, two of which constitute the outside of the building. The classroom section, in front, is of dignified and handsome appearance. Along the sides of the building are two long, high, narrow sections known as the "architectural screens." Within the court formed by these two parts is the laboratory section on a single level and with overhead lighting. The location of the building on sloping ground along Prospect Street on Pierson-Sage Square, above the Osborn and Science Laboratories, lends itself admirably to a building of this type. The rear of the building is on a level with the ground. In front it permits...
below it another story of approximately half the floor space of the main floor and of full height. None of the building proper is in any sense a basement.

Entering through a great arched doorway into the building, one comes into an imposing lobby, floored and walled with stone, and bearing in the ceiling massive, rough-hewn beams. This leads into a hallway which extends for two hundred and fifty feet across the building. Opening into it are classrooms, the main office of the laboratory, and the entrances to the shops, stock rooms, and delivery court. From the hallway there rises a broad stone stairway which leads to the main floor above. Here is a similar hallway extending from east to west across the building. Along one side of it are small classrooms and the two large lecture amphitheaters. On the other side are the offices of the Faculty and the entrances to the laboratory proper. Along the sides of the building and occupying the "architectural screen" section are a large number of small laboratories. In the center of the west section is the library. Within the central court, a space two hundred and fifty feet long and one hundred and eighty feet wide, are all the teaching laboratories, divided by partitions which are entirely non-structural. Below the laboratory section is a shallow chamber known as the "plenum" space, through which run the steel pillars on which the floor is supported and into which come all water, gas, air, and steam lines, electrical conduits, and all drains. The air which is drawn into the building from the outside over tempering coils passes first into this chamber, where it is allowed to mix and attain uniform temperature before being carried into the building.

The teaching laboratories have a total capacity of nine hundred students at one time. With three shifts, this means the possibility of accommodating twenty-seven hundred students in laboratory courses, locker space being provided for this number. These laboratories provide facilities for teaching elementary, organic, analytical, industrial and physical chemistry. The desks are fitted for gas, water, compressed air, electricity, and steam. Mixers at each sink combine the steam and cold water to give water of any desired temperature. The tops of the desks are of Alberene stone, and the hoods and shelves are also of this material. Drying closets and all the air ducts of the laboratories are constructed of heavy asbestos board. The cabinet work of the desks was all done outside the building, these being later placed in position. This means ready accessibility when alterations or repairs are necessary. The partitions, both those between the laboratories and those which form the hallways, are of the thickness of one brick, and may be shifted with the minimum expense and inconvenience. This is a distinctive feature which insures in caring for grossing so above the laboratories a maximum of skylights at the north so that in sun directly into the room insulating the winter and of the labor which fuse supplied by steam and air. The laborator with the to chemistry of the labor fifty feet w floor level is under th of the labor appears traveling a shafting, a trial dimer.

Besides being capacity room, one three fune room is a experiment desks who. These mor the center carries a desk is a that in ear where it flooring e lighting i light, whi. The floor the lecture play upon student o lecture an audible is fitted wit. A real graduate Providor worker, students, natural air light, an. These is free tes.
distinctive feature of the building, the extreme flexibility of the various laboratories indulging a long period of usefulness in caring for a rapidly changing and progressing science. The saw-tooth roof above the laboratory section is carried on iron pillars twelve feet high, and has a maximum height of twenty feet. The skylights are set nearly vertical and on the north side of the roof. This means that in summer the sun never shines directly into the laboratories. The spaces in the room seem to function as heat accumulators, keeping the rooms warm in winter and cool in summer. In the center of the laboratory section is a stock-room which functions as a retail store, being supplied by large storage rooms for apparatus and chemicals on the floor below. The laboratories are all on a single level with the exception of the space devoted to chemical engineering. This portion of the laboratory is one hundred feet long, fifty feet wide, and extends from the first floor level up through the main floor and is under the same roof as the remainder of the laboratories. In addition to factory size apparatus, it has two galleries and a traveling crane, and is equipped with shafting, piping, and wiring of industrial dimension.

Besides eleven classrooms with a seating capacity of about seven hundred, there are two large lecture rooms, one of which will accommodate 150 persons and the other three hundred. Back of the platform of the smaller lecture room is a well-equipped storage and preparation room. Here experimental reactions are gotten ready on desks which may be rolled on tracks into either lecture room. There is a monochromatic demonstration lecture desk in the center of the platform. A down-draft register on the desk carries away any fumes that may be evolved, and back of the desk is a small iron door communicating with a fume closet, so that in case an experiment goes wrong it may be transferred to where it can do no harm. The lecture room walls are of flooring cork stained and paneled in dark oak. The artificial lighting is of the indirect type, flooding the room with soft light, while skylights equipped with shutters admit daylight. The floor slopes up at the proper angle to give a good view of the lecture desk from every seat. Spot lights are arranged to play upon the surface of the desk, focusing the attention of the student on the demonstration. The acoustic properties of these lecture rooms are remarkably good, the loudest tones being audible in the most remote corners. The lecture rooms are fitted with projection lanterns and motion picture apparatus.

A striking feature of the building is the space devoted to graduate work and especially to advanced chemical research. Provision has been made for one hundred and twenty research workers, most of them in small laboratories arranged for two students. These small laboratories are located in the "architectural arcana" along the side of the laboratory, having outside light, and are specially equipped for original investigations. These laboratories are isolated units where the workers may be free from the distractions of the teaching laboratories, and at the same time are conveniently located with reference to the library and supply room.

The library is a spacious and cheerful room, finished and furnished in dark oak, with carved decorations of the same nature as those on the outside of the building, and with a massive fireplace. All the text books, reference books, and bound files of chemical journals are collected in this room, these being partially duplicated in the main university library.

The third floor of the "architectural arcana" is intended for dormitory rooms, and on the west side these are finished and occupied by graduate students and instructors. The social life of the building is carried for by a large "common room" and a well-equipped kitchen.

The Sterling Laboratory is constructed of pressed red brick and Longsmowd brown sandstone, in the Collegiate Gothic style. Its decorations are significant of chemistry. At the main entrance is a great shield of Yale University guarded by symbolic figures. On either side of this are the seals of the State of Connecticut and of New Haven Colony. On the front of the building are found tablets bearing the eight alchimistic symbols with their modern interpretations. Beyond these are other tablets inscribed with the names of the greatest chemists of all time. Among them is J. Willard Gibbs, for many years professor in Yale, whose originisation of the "Phase Rule" has given his name scientific immortality. Across the front of the building are tiny tablets bearing the atomic numbers of the known elements. Along the sides of the building are carvings showing chemical formulae, symbolic representations of fire, electricity, light, and power, familiar chemical apparatus, interspersed with whimsical designs such as bulldogs, owls, and grotesque faces.

The Dedication

Presentation of the Keys

BY MR. GEORGE H. CHURCH

Reverend Grace Church, J.C. Galloway, and M. W. Sterling.

A S one of the Trustees under the will of the late Mr. John Willard Gibbs, J.C. H. Church is acting on their behalf in the dedication of this building, constructed and equipped with funds furnished by Mr. Sterling's Estate and named in his honor Sterling Chemistry Laboratory.

THE CHEMICAL ENGINEERING LABORATORY

It was within this room that the dedication exercises were held.

The library is a spacious and cheerful room, finished and furnished in dark oak, with carved decorations of the same nature as those on the outside of the building, and with a massive fireplace. All the text books, reference books, and bound files of chemical journals are collected in this room, these being partially duplicated in the main university library.

The third floor of the "architectural arcana" is intended for dormitory rooms, and on the west side these are finished and occupied by graduate students and instructors. The social life of the building is carried for by a large "common room" and a well-equipped kitchen.

The Sterling Laboratory is constructed of pressed red brick and Longsmowd brown sandstone, in the Collegiate Gothic style. Its decorations are significant of chemistry. At the main entrance is a great shield of Yale University guarded by symbolic figures. On either side of this are the seals of the State of Connecticut and of New Haven Colony. On the front of the building are found tablets bearing the eight alchimistic symbols with their modern interpretations. Beyond these are other tablets inscribed with the names of the greatest chemists of all time. Among them is J. Willard Gibbs, for many years professor in Yale, whose originisation of the "Phase Rule" has given his name scientific immortality. Across the front of the building are tiny tablets bearing the atomic numbers of the known elements. Along the sides of the building are carvings showing chemical formulae, symbolic representations of fire, electricity, light, and power, familiar chemical apparatus, interspersed with whimsical designs such as bulldogs, owls, and grotesque faces.

The Dedication

Presentation of the Keys

BY MR. GEORGE H. CHURCH

Reverend Grace Church, J.C. Galloway, and M. W. Sterling.

A S one of the Trustees under the will of the late Mr. John Willard Gibbs, J.C. H. Church is acting on their behalf in the dedication of this building, constructed and equipped with funds furnished by Mr. Sterling's Estate and named in his honor Sterling Chemistry Laboratory.

THE CHEMICAL ENGINEERING LABORATORY

It was within this room that the dedication exercises were held.

The library is a spacious and cheerful room, finished and furnished in dark oak, with carved decorations of the same nature as those on the outside of the building, and with a massive fireplace. All the text books, reference books, and bound files of chemical journals are collected in this room, these being partially duplicated in the main university library.

The third floor of the "architectural arcana" is intended for dormitory rooms, and on the west side these are finished and occupied by graduate students and instructors. The social life of the building is carried for by a large "common room" and a well-equipped kitchen.

The Sterling Laboratory is constructed of pressed red brick and Longsmowd brown sandstone, in the Collegiate Gothic style. Its decorations are significant of chemistry. At the main entrance is a great shield of Yale University guarded by symbolic figures. On either side of this are the seals of the State of Connecticut and of New Haven Colony. On the front of the building are found tablets bearing the eight alchimistic symbols with their modern interpretations. Beyond these are other tablets inscribed with the names of the greatest chemists of all time. Among them is J. Willard Gibbs, for many years professor in Yale, whose originisation of the "Phase Rule" has given his name scientific immortality. Across the front of the building are tiny tablets bearing the atomic numbers of the known elements. Along the sides of the building are carvings showing chemical formulae, symbolic representations of fire, electricity, light, and power, familiar chemical apparatus, interspersed with whimsical designs such as bulldogs, owls, and grotesque faces.
Soon after beginning the practice of law in New York City, Mr. Sterling became a partner of the law firm of David Dudley Field and Thomas G. Shearman, composing the firm of Field & Shearman. Upon the retirement of Mr. Field, in 1879, the firm of Shearman & Sterling was formed; and although Mr. Shearman died in 1900, the firm name was continued by Mr. Sterling, and since his death it has been continued by Mr. John A. Garver, Yale 1873, who for many years was a partner with him.

For more than thirty years prior to his death, I was closely associated with Mr. Sterling and his firm in the conduct of their trust and other matters of an accounting nature, and I was in a position to observe the single-mindedness with which he applied his untiring energy, his business sagacity, and his great experience to the interests of his clients. His foremost thought in connection with every matter committed to his care or with which he had any association was service: the best service that he could render with the assistance that was available to him. He gained easily and completely the absolute confidence and trust of all who came in contact with him, no matter how exalted or how humble.

There were two objects to which he was especially devoted, the Miriam Osborn Memorial Home and Yale University. The Home was established under the will of Mrs. Miriam A. Osborn, widow of Charles J. Osborn, who in her lifetime (doubtless at the suggestion of Mr. Sterling) donated Osborn Hall to Yale, in memory of her husband, and also provided funds with which the Biological Laboratory was subsequently built. Mr. Sterling was the active executor of Mrs. Osborn's estate and devoted much time and attention to the establishment and operation of the Home at Harrison, New York, for the benefit of needy gentlewomen who may there pass the remaining years of their lives among comfortable and attractive surroundings; and he personally added very largely to the generous fund provided by Mrs. Osborn. But Mr. Sterling's main objective and the inspiring incentive of a lifetime was his Alma Mater. Into her welfare he poured his utmost energy, and this energy never failed. He never married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and enlargement of a building to honor his alma mater.

Acceptance for the University

BY PRESIDENT JAMES ROWLAND ANGELL

On behalf of Yale University, I gratefully accept this magnificent bequest to the love and devotion which John W. Sterling bore his alma mater. On this spot generation after generation of eager youth will be taught to recognize, obey, and direct to man's needs the fundamental laws of nature. Here the ablest minds will delve continually into nature's secrets, unlocking her treasures for the increasing happiness of all mankind. Industry and art, agriculture and commerce, medicine and engineering, will be the chief beneficiaries of the labor here expended. And best perhaps of all will be the ever more penetrating insight into the mysteries composition of the great universe in which we live.

On the understanding, however, that the life and human welfare, Mr. Sterling will have a share in and to you, Sir, the representative of his faithful Trustees, under whose careful guidance this great gift has been administered, we record our enduring gratitude.

Early Days of Yale Chemistry

It seems fitting on this occasion to call to mind, however briefly, a few of the men to whom the University is most commonly attributed for the development of chemistry. The history of this science at Yale began 119 years ago, in 1886, when Benjamin Silliman, responding to an invitation of President Dwight, gave, on April 4, 1846, his first lecture on Chemistry in a building since destroyed, which stood on the South side of Chapel Street. In 1852 he became Professor-exercitans, and in the intervening interval not only established firmly the interests of Chemistry as a subject of academic instruction, but also in 1870 founded the American Journal of Science, which is still conducted by his grandson, Professor Edward D. Silliman. He furthermore succeeded at an early date in gaining academic recognition for Mineralogy and Geology and was actively instrumental in the founding of the Sheffield Scientific School.

Among his students and assistants was his son Benjamin Silliman, Jr., who subsequently succeeded to the Professorship of General and Applied Chemistry, John P. Norton, later Professor of Agricultural Chemistry in the Sheffield Scientific School, Professor George F. Barker, afterward at the University of Pennsylvania, and Oliver T. Hubbard, subsequently Osborn's. It was in 1886 when Samuel W. Johnson was appointed Professor of Analytical and Agricultural Chemistry and served for forty years. Through his efforts the Connecticut State Agricultural Experiment Station, of which he was made Director, was established in 1879, and, this being the first institution of its character, he thus became the founder of the great movement which has since spread all over the country affecting the practical nature of agriculture in the most fundamental way. Not only through his own contributions, but through the training of a remarkable group of distinguished students, among whom mention may be made of Chittenden, Jenkins, Atwater, and Osborne, he left enduring contributions to agricultural and physiological chemistry.

Few men in American science have achieved a more eminent position than James Galbraith, who was Professor for thirty-two years in Yale, having been appointed Professor of Mathematical Physics in 1871. His fundamental contribution to the formulation of the principle of chemical equilibrium is recognized to-day as one of the great outstanding achievements of modern chemical theory.

The continuing work of Russell H. Chittenden is so fresh in the minds of all, that only the most intimate of contacts need enlarge upon it, but it is simple justice to say that physiological chemistry.

The last work of Russell H. Chittenden is so fresh in the minds of all, that only the most intimate of contacts need enlarge upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

The continuing work of Russell H. Chittenden is so fresh in the minds of all, that only the most intimate of contacts need enlarge upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.

Scholarships. Already ten professorships have been endowed, this building has been completed, the Sterling Hall of Medicine married and the wills which he made at various times always left the great bulk of his fortune to Yale, for the erection and large upon it, but it is simple justice to say that physiological chemistry.

Sterling bore his alma mater.
The remarkable increase of interest in Chemistry and the great number of students, not only undergraduates, but graduates and members of the professional schools, desiring to pursue chemical studies, led to the request of the Corporation to the Trustees of the estate of John W. Swine. to consider the erection of a University Laboratory of Chemistry, and the great building in which we are now gathered is the outcome of this request. May those who labor in it be worthy of the great ideals which animated the founders of their science, and of the noble men who have preceded them in its development here at Yale.

To the A. C. S.

And now, Dr. Franklin, it is my privilege and pleasure to turn over to you, as President of the American Chemical Society, the use of this beautiful structure for your purposes during the week, and so fortunate as to have you with us. The University puts itself at your disposal and trusts that you may find advantage in the various arrangements provided for your convenience.

[President E. C. Franklin, responding for the American Chemical Society, expressed the gratitude of that body for the University's hospitality, and accepted the laboratory for use during the meeting.]

The History of Chemistry in America, with Special Reference to Yale

BY EDGAR FAHS SMITH
FORMER PROVOST, UNIVERSITY OF PENNSYLVANIA

I AM indeed grateful for the opportunity of speaking to you on the History of Chemistry in America, with reference to Yale. This is an epochal occasion, and while we rejoice in the possession of this magnificent, palatial edifice, designed for the University's hospitality, and accepted the laboratory for use during the meeting.

[The History of Chemistry in America, with Special Reference to Yale - by Edgar Faes Smith - former Provost, University of Pennsylvania]
have about it are only imaginary, conjectural, and speculative.

Coom Dow Veritas."

Dear old Dr. Ezra Stiles! We rejoice that you turned from witchcraft, which looks backward, but are profoundly thankful that you were, despite your love’s disclaimers, allied with alchemy, which looks forward; for truly it was experimental science in the making, a science that does not yet acknowledge its finite bounds but aspire, star-cry, to inscrutable possibilities. Yes, you were Yale’s first experimenter in the science which has called me together this morning, and may your benison, fatherly spirit at this moment rest approvingly upon all who are here, rejoicing with Yale in this new age of chemistry.

Time rolled on. The soul of Ezra Stiles went out on the soul of Yale who, like Stiles, became a lawyer, but animated by the same purpose of the dear old alchemist in his predication for chemistry, headed the call of Alma Mater, in 1802, to the chair of chemistry. Before assuming its duties, however, he journeyed to Philadelphia, then the center of art, literature, and science, that he might sit at the feet of James Latimer, a man of great prominence educated men of elevated position in chemistry upon the scale of that period. Hare invited me to join him in the study of his oxy-hydrogen flame, and said:

"For a few moments, follow this eager, earnest student—Benjamin Silliman, the elder.

What a delightful company awaited him in his lodging house in the City of Brotherly Love: Horace Binney, Charles and Elham Channing, and Robert Hare—young men of great promise—educated men—men of elevated position in society, their minions in harmony with their training. Silliman wrote: "As Robert Hare was a breather of porter and was one of our number, his porter was in high request, and indeed it was of an excellent quality. He was a genius, kindhearted person, a year younger than myself, and a proficient in chemistry upon the scale of that period. Hare invited me to join him in the study of his oxy-hydrogen blowpipe."

While perceiving that this instrument was ingenious, Silliman saw that it was unsafe as regards the storage of gases, and its correction in this particular was entirely due to him. It was a genuine pleasure for Silliman to stand by his friend Hare in 1822 when the latter repeated his blowpipe experiments before Dr. Joseph Priestley, James Woodhouse, Thomas Cooper, Adam Saybolt and others. One wishes that he might have a picture of that group.

The possibilities of the oxy-hydrogen flame were constantly in the thought of Silliman, and the very first pneumatic trough, including Hare’s blowpipe, was constructed by Silliman for the laboratory of Yale College in 1824. In later years he wrote: "The fusion and combustion and complete dissipation of platinum, gold, silver, nickel, cobalt, and most of the metals, and the fusion of the principal earths and of their more radioactive compounds have been made familiar and easy class experiments of every course of chemistry in Yale College for years."

Silliman and Hare were pupils of Woodhouse, who, when interrogated upon the brevity of his didactic lectures, replied, "That no man could derthl, in discussion, on a single topic more than five minutes without talking nonsense."

They were acquainted with his laboratory and the remarkable experimental work conducted by him, but in their leisure hours did not independent thinking and experimenting in their own laboratory in the basement of their residence.
Yale Papers in Section Meetings

Of the three hundred and sixty papers presented at the various sections and divisions of the American Chemical Society on April 3 and 4, twenty-eight were contributions from Yale.

Professor E. B. Boltwood, '92, spoke before the Division of Industrial and Engineering Chemistry at a symposium on "Materials of Chemical Equipment" on the "Construction of the Sterling Chemistry Laboratory," discussing the use of resistant materials for sinks, drains, hood, benches, tops, furnaces and drying ovens and the special type of plumbing employed throughout. Professor Boltwood has given most of his time since this building was begun to the details of construction.

In the division of Cellulose Chemistry, Professor Harold Hibbert presented the following papers: "Cyclic Esters from Tetramethylene Glycol" (with Dr. H. S. Hill, '95, S.); "Speculations on the Formation of Products Related to Lipin." Professor Hibbert also participated in a symposium on "Oxycellulose, Cellulose Hydrate and Hydrosulphate.

Professor George S. Counts, of the Department of Education, spoke before the Section of Chemical Education on "Nuclear Research on the Teaching of Chemistry in Secondary Schools." Professor Louis K. Mendel, '99, of the Department of Physiological Chemistry, presented a paper before the Division of Biological Chemistry on "Animal Experimentation and the Science of Nutrition." He has been a part of the symposium on the subject of nutrition. Dr. Thomas E. Osborne, Jr., of the Connecticut Agricultural School, has collaborated with Professor Mendel for many years and whose work on vegetable proteins is classic, spoke on "Problems yet to be Solved in Connection with the Protein Requirements in Nutrition with Suggestions as to the Possibility of Their Solution."

Donald H. Andrews, '20, who is a candidate for the doctorate degree this year, presented a paper before the Division of Physical and Inorganic Chemistry on "The Interpretation of Time-Temperature Curves." Mr. Andrews has devised a very ingenious form of apparatus so constructed that the substance under observation loses heat at a rate proportional to the temperature difference between the substance and its surroundings.

G. T. Kohman, who is also a candidate for the doctorate of philosophy in June, spoke in the same division on "Simplified Construction of Terenary Freezing Point Diagrams." He has been able to construct solubility diagrams from a small number of observations and to this end has used a mean of analyzing mixtures of isomeric organic compounds. Menas, Andrews and Kohman have been working under the direction of Professor John Johnston and Professor R. G. Yanke.

Professor J. V. Hiscott of the Department of Public Health addressed the Division of Water, Sewage and Sanitation on "The Status of Laboratory Control of Water Supplies and Sewage Treatment in Large Cities of the United States in 1902." In the Division of Organic Chemistry, the showing made by Yale chemists was excellent.

Professor Dr. Robert Johnson, '98, S., was represented by the following papers:

"Application of Catalytic Reduction in the Pyrimidine Series" (with Dr. E. B. Brown, '20, M.A., National Tuberculosis Association Fellow).

"A little store of unexpected flowers.
So gathered I three records of past days,
And trust them to thy grace.

"The Status of Isomeric Organic Compounds."
Messrs. Andrews and Kohman have been able to construct solubility diagrams from a small number of observations and to this end have used a mean of analyzing mixtures of isomeric organic compounds. Menas, Andrews and Kohman have been working under the direction of Professor John Johnston and Professor R. G. Yanke.

The paper which probably attracted the greatest amount of attention was that given by Dr. E. B. Brown, National Tuberculosis Association Fellow, who has been working for the past two years under Professor Dr. Johnson on the chemistry of the Tuberculosis Bacillus. These investigators have isolated the most characteristic part of the bacillus, a substance known as "mucic acid," which is composed of certain nitrogen compounds, phosphenic acid and a sugar. There are two types of mucic acids, those of known animal origin and those of vegetable origin. They have isolated and proven by accurate tests the presence of the nitrogen compound known as "Thymine" and also a six carbon sugar, which proves the tubercle bacillus to be of animal origin. This is regarded as the best accurate investigation of the chemical nature of the tubercle bacillus, and the results are expected to be of far-reaching value in approaching the solution of the problem of tuberculosis.

April 6

Dr. Priestly's address, his hours and Saybrook, w revolving as subjects, he observed that there were many among your fellows that had regard to the nature of the world in the physical and scientific world. Last evening I stood "under the friendly shade of the moon" before the bronze figure of Benjamin Silliman, out on the campus, and I wished that I might speak out my thoughts to you! I did whisper to him: "To you, revered Master, we are indebted for this magnificent laboratory. Your spirit, mysteriously conveyed to your successors in order, caused science—indeed, all chemical science—to so permeate the curriculum of Old Yale that the subterranean laboratory has been brought to the surface, enlarged and developed, and endowed, that its rays may illuminate the world—far and wide."

We chemists here assembled say to Yale that we are not envious—no, we are happy, felicitating you with all our hearts and with you thinking that Silliman, the elder, was born.

"At one university to another"

"A little store of unexpected flowers,
So gathered I three records of past days,
And trust them to thy grace.

"The Status of Isomeric Organic Compounds."
Messrs. Andrews and Kohman have been able to construct solubility diagrams from a small number of observations and to this end have used a mean of analyzing mixtures of isomeric organic compounds. Menas, Andrews and Kohman have been working under the direction of Professor John Johnston and Professor R. G. Yanke.

The paper which probably attracted the greatest amount of attention was that given by Dr. E. B. Brown, National Tuberculosis Association Fellow, who has been working for the past two years under Professor Dr. Johnson on the chemistry of the Tuberculosis Bacillus. These investigators have isolated the most characteristic part of the bacillus, a substance known as "mucic acid," which is composed of certain nitrogen compounds, phosphenic acid and a sugar. There are two types of mucic acids, those of known animal origin and those of vegetable origin. They have isolated and proven by accurate tests the presence of the nitrogen compound known as "Thymine" and also a six carbon sugar, which proves the tubercle bacillus to be of animal origin. This is regarded as the best accurate investigation of the chemical nature of the tubercle bacillus, and the results are expected to be of far-reaching value in approaching the solution of the problem of tuberculosis.

"A little store of unexpected flowers,
So gathered I three records of past days,
And trust them to thy grace.

"The Status of Isomeric Organic Compounds."
Messrs. Andrews and Kohman have been able to construct solubility diagrams from a small number of observations and to this end have used a mean of analyzing mixtures of isomeric organic compounds. Menas, Andrews and Kohman have been working under the direction of Professor John Johnston and Professor R. G. Yanke.

The paper which probably attracted the greatest amount of attention was that given by Dr. E. B. Brown, National Tuberculosis Association Fellow, who has been working for the past two years under Professor Dr. Johnson on the chemistry of the Tuberculosis Bacillus. These investigators have isolated the most characteristic part of the bacillus, a substance known as "mucic acid," which is composed of certain nitrogen compounds, phosphenic acid and a sugar. There are two types of mucic acids, those of known animal origin and those of vegetable origin. They have isolated and proven by accurate tests the presence of the nitrogen compound known as "Thymine" and also a six carbon sugar, which proves the tubercle bacillus to be of animal origin. This is regarded as the best accurate investigation of the chemical nature of the tubercle bacillus, and the results are expected to be of far-reaching value in approaching the solution of the problem of tuberculosis.
The Boston Yale Club House
Attractive and Commodious Building for the Yale Club of Boston Formally Opened at No. 10 Derne Street

Spring Prospects for the Faculty Teams
Professor Phelps Writes on the Outlook for Baseball, Tennis, and Rowing

Office 180 High Street, New Haven, Connecticut
$4.00 a Year
10 cts. a Copy
The Sterling Chemistry Laboratory was erected at a cost of $2,000,000 out of the fund left to the University by the late John W. Sterling for building and other specific purposes. It is the largest single building unit devoted to the study of Chemistry in the country and covers about two acres of ground on the Pierson-Sage square, on Prospect Street.

Its opening but typifies the new era in Yale's development

"It is a superb monument to the love and devotion which John W. Sterling bore to his alma mater. On this spot generation after generation of eager youth will be taught to recognize, to obey, and to direct to man's needs the fundamental laws of Nature. Here the ablest minds will delve continually into Nature's secrets, unlocking her treasures for the increasing happiness of all mankind. Industry and art, agriculture and commerce, medicine and engineering will be the constant beneficiaries of the labor here expended, and best of all will be the evermore penetrating insight into the marvellous composition of the great universe in which we live."
IT was thus and in the presence of the most eminent chemists gathered from this country and abroad that President Angell dedicated to the service of present and future generations the Sterling Chemistry Laboratory.

For Yale men in particular, these words will ring out as the inspiring call of a prophet who has a strong, abiding faith in the deep purposes of the institution and in their fulfillment.

Nor can President Angell's words be misread or misinterpreted. He was quite conscious that he was dedicating a building, "superb monument" though it be, but only a building, a plant, a tool, an opportunity. He knew and meant that the big job had only begun and that Yale's larger contributions to science and to human happiness could become possible only by balancing this most modern material equipment by the ablest teachers and scientists.

AND this is but typical of the whole situation at New Haven to-day. The superb new buildings which have recently been and are shortly to be added make Yale relatively better off in her physical equipment than in her equipment of men for teaching and research.

Not upon the large giver, but upon the great body of her Alumni, through the Alumni Fund, Yale must rely ultimately for those resources which will enable her to keep pace in her spiritual growth with her material development.

"There is literally no limit," President Angell says, "to the development which Yale can quickly experience and no limit to the service she can render granted the funds required."

That is why your Class Agent is so earnest in his efforts to get you to contribute all in your power to the Alumni Fund.

Your Class agent is a hard working volunteer. A prompt reply to his appeal will relieve him of much hard work. Send your contribution to him or to George Parmly Day, Treasurer, New Haven, Connecticut.